Development and use of a new task model for cyber-physical systems: A real-time scheduling perspective
نویسندگان
چکیده
In a typical cyber-physical system (CPS), the cyber/computation subsystem controls the physical subsystem, and therefore the computer society has recently paid considerable attention to CPS research. To keep such a CPS stable, feedback control with periodic computation tasks has been widely used, and its theoretical guarantee of stability has been made with periodic real-time task models that enforce strict periodic control updates. However, some control update misses are usually allowed (e.g., via system over-design) in certain physical subsystem states (PSSes) without causing system instability, and the resources required for strict periodic control updates can thus be reduced or used for other purposes, achieving efficient controls for the entire CPS in terms of the operational cost, such as fuel consumption or tracking accuracy. In this paper, we propose a new periodic, fault-tolerant CPS task model , which not only expresses efficiency and stability of the underlying physical subsystem, but also generalizes existing periodic real-time task models, by capturing a tolerable number of control update misses in different PSSes. To demonstrate the utility of this model, we develop a new scheduling mechanism that prioritizes jobs (i.e., periodic invocations) of a set of tasks not only by the nature of each task, but also by the number of consecutive prior job deadline misses. Based on its analysis in terms of stability and efficiency, we also propose a priority-assignment policy that lowers the system operation cost without compromising stability. Our in-depth analysis and simulation results show that the scheduling mechanism and its analysis, as well as the priority-assignment policy under the proposed model not only generalize the existing periodic real-time task models, but also significantly lower the system operation cost without losing sta-
منابع مشابه
An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملCyber-Physical Systems Modeling and Simulation with Modelica
This paper introduces the area of Cyber-Physical Systems (CPS) and describes the relation to Modelica and Modelica-based tools. Special aspects of CPS applications that should make Modelica well suited for their modeling and simulation are highlighted. Recent Modelica developments facilitating integrated model-based system development applicable to CPS are presented. Especially, it is shown how...
متن کاملDevelopment of Model and Algorithm for Depot Balancing Multi-Depot Vehicle Scheduling Problem Considering Depot Balancing
The main of multi-depot vehicle scheduling problem (MDVSP) is to schedule the timetabled trips using limited resources, optimally. The problem is very important in the management of the transportation systems. One of the most useful ways to better manage these systems is to consider the real conditions including depot balancing constraints. To normalize the number of vehicles departed from each...
متن کاملSafety Verification of Real Time Systems Serving Periodic Devices
In real-time systems response to a request from a controlled object must be correct and timely. Any late response to a request from such a device might lead to a catastrophy. The possibility of a task overrun, i.e., missing the deadline for completing a requested task, must be checked and removed during the design of such systems. Safe design of real-time systems running periodic tasks under th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Systems and Software
دوره 126 شماره
صفحات -
تاریخ انتشار 2017